NO CALCULATOR!! SHOW ALL WORK AND EXPRESS EACH ANSWER IN SIMPLEST FORM!

1. State the domain of each function using interval notation.
a) $\mathrm{f}(\mathrm{x})=\sqrt{x+16}$
b) $\mathrm{p}(\mathrm{x})=\sqrt{14-3 x}$
c) $g(x)=\frac{\sqrt{8-x}}{x+7}$
d) $\mathrm{f}(\mathrm{x})=\frac{2 x+3}{\sqrt{5-x}}$
e) $g(x)=\frac{\sqrt{5-x}}{\sqrt{x+3}}$
2. Simplify:
a) $\frac{4}{4 x}$
b) $\frac{5 x}{1 / 3}$
c) $\frac{-2}{4 / x}$
d) $\frac{x-3}{1 / x^{2}}$
3. Let $\mathrm{f}(\mathrm{x})=2-6 \mathrm{x}$ and $\mathrm{g}(\mathrm{x})=\frac{2}{3 x}$
a) Find $\left(\frac{f}{g}\right)(x)$
b) Find $(f \circ g)(x)$
c) Find $(g \circ f)(x)$
4. Use the function $f(x)=3 x^{2}-5$ to evaluate the indicated expressions.
a) $\mathrm{f}\left(\frac{2}{3}\right)$
b) $f(2)$
c) $f(2 x)$
d) $2 f(x)$

$$
\begin{gathered}
\text { CHECK ANSWERS\#1-3 } \\
\mathrm{x} \leq \frac{14}{3} \text { therefore }\left(-\infty, \frac{14}{3}\right] \\
\mathrm{x} \geq-16 \text { therefore }[-16, \infty) \\
x<5 \text { therefore }(-\infty, 5) \\
-3<x \leq 5 \text { therefore }(-3,5] \\
\mathrm{x} \neq-7 \text { and } \mathrm{x} \leq 8 \text { therefore } \\
(-\infty,-7) \cup(-7,8] \\
3 \mathrm{x}-9 \mathrm{x}^{2} \quad 15 \mathrm{x} \quad \mathrm{x}^{3}-3 \mathrm{x}^{2} \\
-\frac{x}{2} \quad \frac{1}{x} \quad \frac{1}{3-9 x} \quad 2-\frac{4}{x}
\end{gathered}
$$

CHECK ANSWERS\#4-7

$$
\begin{array}{ccc}
\mathrm{f}(\mathrm{x})= & -2 \sqrt{\mathrm{x}+3}+7 \\
\frac{3 x-2}{6 x^{2}} & \frac{-11}{3} & 7 \\
\frac{1}{96} \\
\frac{1}{2 x^{2}}-2 & 18 \mathrm{x}^{3}-12 \mathrm{x}^{2} \\
6 \mathrm{x}^{2}-10 & 9 \mathrm{x}-8 & 12 \mathrm{x}^{2}-5 \\
\frac{5 x+7}{x-2} & \sqrt[3]{2-5 \mathrm{x}} & \frac{6 x}{1-x}
\end{array}
$$

6. A function f is given and the indicated transformations are applied to its graph (in the given order.) Write the equation for the final transformed graph. $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}} \rightarrow$ stretch vertically by a factor of 2 , reflect across the x axis, shift 3 units to the left, and shift upward 7 units.
7. Find the inverse of the given functions.
a) $f(x)=\frac{2-x^{3}}{5}$
b) $g(x)=\frac{x}{x+6}$
c) $\mathrm{h}(\mathrm{x})=\frac{2 \mathrm{x}+7}{\mathrm{x}-5}$
CHECK ANSWERS: $-2 x_{1}-1$

$y=4(x+3)^{2}-9$	$x^{2}-3 x+1$	$(x+1)(x-2)^{3}$	$x^{2}(x-3)(x+1)$	$(0,27)$	$(3,4)$
$y=5(x-3)^{2}+4$	$x\left(x^{2}+4\right)\left(x^{2}-3\right)$	$(x+2)(x-2)\left(x^{2}+1\right)$	$\left(-\frac{9}{2}, 0\right)$	$\left(-\frac{3}{2}, 0\right)$	

8. Given: $\mathbf{f}(\mathbf{x})=\mathbf{5} \mathbf{x}^{\mathbf{2}}-\mathbf{3 0} \mathbf{x}+\mathbf{4 9}$

Write the equation in standard form by completing the square, then identify the vertex.
9. Given: $\mathbf{f}(\mathbf{x})=\mathbf{4} \mathbf{x}^{\mathbf{2}}+\mathbf{2 4} \mathbf{x}+\mathbf{2 7}$

Write the equation in standard form by completing the square, then identify $x-\& y$-intercepts and vertex.
10. Factor, then identify the zeros of $P(x)$ and sketch a graph. $\mathrm{P}(\mathrm{x})=\mathrm{x}^{4}-2 \mathrm{x}^{3}-3 \mathrm{x}^{2}$

12. Identify the quotient and the remainder using synthetic division:

$$
\left(x^{3}-8 x+2\right) \div(x+3)
$$

11. Factor, then identify all real and complex zeros. (Solve as is by factoring, no synthetic division.)
a) $P(x)=x^{4}-3 x^{2}-4$
b) $R(x)=x^{5}+x^{3}-12 x$
12. Using synthetic division, completely factor $\mathrm{P}(\mathrm{x})$ AND find all zeros of $P(x)=x^{4}-5 x^{3}+6 x^{2}+4 x-8$
