Honors Trig/Pre-Calculus

NO CALCULATOR !! SHOW ALL WORK AND EXPRESS EACH ANSWER IN SIMPLEST FORM!

Ch. 2&3 Review

- 1. State the domain of each function using interval notation.
 - a) $f(x) = \sqrt{x+16}$ b) $p(x) = \sqrt{14-3x}$ c) $g(x) = \frac{\sqrt{8-x}}{x+7}$ d) $f(x) = \frac{2x+3}{\sqrt{5-x}}$ e) $g(x) = \frac{\sqrt{5-x}}{\sqrt{x+3}}$
- 2. Simplify:
 - a) $\frac{4}{4x}$ b) $\frac{5x}{\frac{1}{3}}$ c) $\frac{-2}{\frac{4}{x}}$ d) $\frac{x-3}{\frac{1}{x^2}}$
- 3. Let f(x) = 2 6x and $g(x) = \frac{2}{3x}$ a) Find $\left(\frac{f}{g}\right)(x)$ b) Find $(f \circ g)(x)$ c) Find $(g \circ f)(x)$
- 4. Use the function $f(x) = 3x^2 5$ to evaluate the indicated expressions. a) $f\left(\frac{2}{3}\right)$ b) f(2) c) f(2x) d) 2f(x)
- 5. If f(x) = 3x 2 and $g(x) = \frac{1}{6x^2}$, determine the following: a) $(f \cdot g)(x)$ b) $(f \circ g)(x)$ c) $(g \circ f)(2)$
 - d) $\left(\frac{f}{g}\right)(x)$ e) $(f \circ f)(x)$

 $x \neq -7 \text{ and } x \leq 8 \text{ therefore}$ $(-\infty, -7) \cup (-7, 8]$ $3x - 9x^{2} \quad 15x \quad x^{3} - 3x^{2}$ $-\frac{x}{2} \quad \frac{1}{x} \quad \frac{1}{3 - 9x} \quad 2 - \frac{4}{x}$ $\frac{CHECK \text{ ANSWERS#4-7}}{f(x) = -2\sqrt{x + 3} + 7}$ $\frac{3x - 2}{6x^{2}} \quad \frac{-11}{3} \quad 7 \quad \frac{1}{96}$ $\frac{1}{2x^{2}} - 2 \quad 18x^{3} - 12x^{2}$ $6x^{2} - 10 \quad 9x - 8 \quad 12x^{2} - 5$ $\frac{5x + 7}{x - 2} \quad \sqrt[3]{2 - 5x} \quad \frac{6x}{1 - x}$

CHECK ANSWERS#1-3

 $x \leq \frac{14}{3}$ therefore $\left(-\infty, \frac{14}{3}\right)$

 $x \ge -16$ therefore $[-16, \infty)$

x < 5 therefore $(-\infty, 5)$

 $-3 < x \le 5$ therefore (-3,5]

6. A function *f* is given and the indicated transformations are applied to its graph (in the given order.) Write the equation for the final transformed graph. $f(x) = \sqrt{x} \rightarrow x$ stretch vertically by a factor of 2, reflect across the x-axis, shift 3 units to the left, and shift upward 7 units.

7. Find the inverse of the given functions.

a)
$$f(x) = \frac{2-x^3}{5}$$
 b) $g(x) = \frac{x}{x+6}$ c) $h(x) = \frac{2x+7}{x-5}$

Name:

	RS: -2 -1 -1 -1			•
$y = 4(x + 3)^2 - 9$	$x^2 - 3x + 1 \qquad (x + 3)$	$(x-2)^3$	$x^{2}(x-3)(x+1)$	(0, 27) (3, 4) (-3, -9)
$y = 5(x - 3)^2 + 4$	$x(x^2+4)(x^2-3)$	(x + 2	$(x-2)(x^2+1)$	$\left(-\frac{9}{2},0\right)$ $\left(-\frac{3}{2},0\right)$

8. Given: $f(x) = 5x^2 - 30x + 49$ Write the equation in standard form by completing the square, then identify the vertex.

9. Given: $f(x) = 4x^2 + 24x + 27$ Write the equation in standard form by completing the square, then identify x- & y-intercepts and vertex.

10. Factor, then identify the zeros of P(x) and
sketch a graph.
$$P(x) = x^4 - 2x^3 - 3x^2$$
11. Factor, then identify all real and complex zeros.
(Solve as is by factoring, no synthetic division.)
a) $P(x) = x^4 - 3x^2 - 4$ \downarrow \downarrow